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Abstract 

A volume integral equation method (VIEM) is applied for the effective analysis of elastic wave scattering problems 
in unbounded solids containing isotropic or anisotropic inclusions. It should be noted that this newly developed nu-
merical method does not require Green's function for anisotropic inclusions to solve this class of problems since only 
Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Through the 
analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic or anisotropic inclusions, it 
will be established that this new method is very accurate and effective for solving plane wave scattering problems in 
unbounded solids containing isotropic or anisotropic inclusions. 
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1. Introduction 

Calculation of the stress and strain fields in solids 
containing multiple inclusions and subjected to exter-
nal loads is of considerable interest in a variety of 
engineering applications. A notable example is the 
stress analysis of damaged fiber reinforced compos-
ites that consist of a large number of densely packed 
fibers with voids or cracks in the matrix. The matrix 
and the fibers in composites are usually made of iso-
tropic material. However, some of the constituents 
can be anisotropic. As an example, in SiC/Ti metal 
matrix composites, the matrix is nearly isotropic, but 
the SiC fibers have strong anisotropy. Structural 
composites are often subject to manufacturing and/or 
service induced defects that strongly affect the re-
maining life of the structure. A precise knowledge of 
the deformation and stress fields near interacting iso-
tropic or anisotropic fibers and voids/microcracks 
under remote loading can be extremely helpful in 

predicting the failure and damage mechanisms in the 
composites. Several techniques have been proposed 
for analyzing multiple-inclusion interactions in an 
infinite medium (see e.g., [1-9]). However, none of 
these methods can be applied to the general problem 
in which the inclusions or voids are of arbitrary shape 
and their concentration is high. To our knowledge the 
only available methods to solve problems of this type 
are the finite element (FEM) or the boundary integral 
equation (BIEM) method.  

However, the finite element method is most effec-
tive when the domain of the problem is finite and it is 
often not possible to separate the influence of the 
boundary from that of the "microscopic" features of 
the material on the elastic field. Conventional finite 
element methods cannot be directly applied to infinite 
domains. The boundary integral equation method is, 
in principle, applicable to this class of problems since 
it can be applied to infinite domains. However, since 
Green's function for anisotropic inclusions is involved 
in the boundary integral equation method and Green's 
function for an anisotropic material is much more 
complex than that for isotropic material, their numeri-
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cal treatment of the boundary integral equations be-
comes extremely cumbersome (see e.g., [10-13]).    

In this paper the solution of the general inhomoge-
neous elastodynamic problem is formulated by means 
of a volume integral equation method for the effective 
accurate calculation of the stresses and displacements 
in unbounded isotropic solids in presence  of multi-
ple isotropic or anisotropic inclusions.  

It should be noted that this newly developed nu-
merical method does not require Green's function for 
anisotropic inclusions, and it can also be applied to 
general two-dimensional elastodynamic as well as 
elastostatic problems (see e.g., [14, 15]) for arbitrary 
geometry and number of inhomogeneities. In the 
formulation of the method, the continuity condition at 
each interface is automatically satisfied, and in con-
trast to finite element method, where the full domain 
needs to be discretized, this method requires discreti-
zation of the inclusions only. Finally, the method 
takes full advantage of the pre- and post-processing 
capabilities developed in FEM and BIEM.  

In this paper, a detailed analysis of the displace-
ment and stress fields is carried out for an unbounded 
isotropic matrix containing isotropic or orthotropic 
cylindrical inclusions. The field at infinity is assumed 
to be a plane time harmonic elastic wave propagating 
parallel to the x-axis. The incident wave can be P
waves with particle motion along the x-axis, SV
waves with particle motion parallel to the y-axis, or 
SH waves with particle motion parallel to the z-
axis. The accuracy and effectiveness of the new 
method are examined through comparison with re-
sults obtained from analytical and boundary integral 
equation methods. It is demonstrated that this new 
method is very accurate and effective for solving 
plane elastodynamic problems in unbounded solids 
containing isotropic or anisotropic inclusions. 

2. The volume integral equation method 
(VIEM) 

The geometry of the general elastodynamic prob-
lem is shown in Fig. 1. Let   and cijkldenote the den-
sity and the elastic tensor of the solid. Let (1) and
cijkl

(1) denote the density and the elastic stiffness tensor 
of the inclusion and (2) and cijkl

(2) those of the un-
bounded matrix material. The matrix is assumed to be 
homogeneous and isotropic so that cijkl

(2) is a constant 
isotropic tensor, while cijkl

(1) is arbitrary, i.e., the inclu-
sions may, in general, be inhomogeneous and anisot- 

Fig. 1. Geometry of the general elastodynamic problem. 

ropic. The interfaces between the inclusions and the 
matrix are assumed to be perfectly bonded, insuring 
continuity of the displacement and stress vectors. 

Let (x, )-i t o
me u  denote the mth component of 

the displacement vector due to the incident field at x
in absence of the inclusions and let x,i t

me u
denote the same in presence of the inclusions, where 

 is the circular frequency of the waves. In what fol-
lows the common time factor i te  and the explicit 
dependence on  of all field quantities will be sup-
pressed.  

It has been shown by Mal and Knopoff [16] that 
um(x) satisfies the equation 

2
, ,

( )

[ ( , ) ( ) ( , ) ( )]
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m m

m m
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V
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g u c g u d
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where the integral is over the whole space,  and 
cijkl are the contrasts in the density and elastic tensor 

of the inclusions and the matrix; i.e.,  = (1) – (2)

and cijkl = (1) (2)
ijkl ijklc c , and ( , )m i t

ig ex  is Green's 
function for the unbounded homogeneous matrix 
material; i.e., ( , )m i t

ig ex  represents the ith com-
ponent of the displacement at  due to a concentrated 
force, i t

me e , at x in the mth direction. In Eq. (1) 
the summation convention and comma notation have 
been used and the differentiations are with respect to 
the integration variable, 1. It should be noted that the 
integrand is non-zero within the inclusions only, 
since cijkl = 0, outside the inclusions. 

If x R (within the inclusions), then Eq. (1) is an 
integrodifferential equation for the unknown dis-
placement vector u(x); it can, in principle, be deter-
mined through the solution of Eq. (1). An algorithm 
based on the discretization of Eq. (1) was developed 
by Lee and Mal [17, 18] to calculate numerically the 
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unknown displacement vector u(x) by discretizing the 
inclusions using standard finite elements. Once u(x)
within the inclusions is determined, the displacement 
field outside the inclusions can be obtained from Eq. 
(1) by evaluating the integral, and the stress field 
within and outside the inclusions can also be deter-
mined without any difficulty. The details of the nu-
merical treatment of Eq. (1) can be found in Lee and 
Mal [17, 18] and will be omitted. In Eq. (1), 

( , )m i t
ig ex  is Green's function for the unbounded 

isotropic matrix material. Thus, the volume integral 
equation method does not require the use of Green's 
function for the anisotropic material of the inclusions. 
This is in contrast to the boundary integral equation 
method, where the infinite medium Green's functions 
for both the matrix and the inclusion are involved in 
the formulation of the equations. The Green’s func-
tions for anisotropic solids can only be obtained in 
integral forms and their evaluation in the vicinity of 
the source point is very difficult. Since the numerical 
implementation of conventional boundary integral 
equation (BIE) requires the evaluation of the dis-
placements and stresses associated with Green’s func-
tion at a large number of points, the method becomes 
extremely unwieldy, if not impossible, to apply in 
even the simplest of model geometries. The present 
method is free from this problem. 

3. Scattering of P and SV waves 

3.1 Scattering of P and SV waves in unbounded 
isotropic matrix containing an isotropic inclu-
sion

In order to check the accuracy of the volume inte-
gral equation method, we first consider a single iso-
tropic cylindrical inclusion in the unbounded isotropic 
matrix. The incident wave can be a P wave with par-
ticle motion along the x-axis, or an SV wave with 
particle motion parallel to the y-axis. Let 1 and 1, 1

denote the density and Lamé constants of the iso-
tropic inclusion, and 2 and 2, 2 the density and 
Lamé constants of the isotropic matrix, respectively. 

For P and SV waves, the volume integral equation 
(1) reduces to 

0
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2 1 1
1 1 2 2

1 1
1,1 1,1 1,1 1,1

( ) ( )

{ [ ( , ) ( ) ( , ) ( )]

[ ( 2 ) ]

R

u u

g u g u

g u g u

x x

x x  (2) 

1 1
1,2 1,2 2,1 2,2 2,2

1 1
2,2 1,1 2,1 1,2 2,1 1 2

[ ( ) ( 2 ) ]

[ ( )]}

g u u g u

g u g u u d d

and 

0
2 2

2 2 2
1 1 2 2

2 2
1,1 1,1 1,1 2,2

2 2
1,2 1,2 2,1 2,2 2,2

2 2
2,2 1,1 2,1 1,2 2,1 1 2

( ) ( )

{ [ ( , ) ( ) ( , ) ( )]

[ ( 2 ) ]

[ ( ) ( 2 ) ]

[ ( )]}

R

u u

g u g u

g u g u

g u u g u

g u g u u d d

x x

x x

 (3) 

where u1(x), u2(x) are the in-plane displacement com-
ponents,  = 1 – 2, (  + 2 ) = ( 1 + 2 1) – ( 2 +
2 2),  = 1 – 2, and  = 1 – 2.

In Eqs. (2) and (3), ( , )m
ig x  is Green's function 

for the unbounded isotropic matrix material. The 
Green's function for the two-dimensional time-
harmonic elastodynamic state is given by (Kitahara, 
1985) 
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where r x , and H0 and H1 are the Hankel func-
tions of the first kind of the zeroth and first orders, 
and k1 = / 2, k2 = / 2  are the P and S wavenum-
bers, and 2, 2 are the longitudinal and shear wave 
speeds in the unbounded matrix.   

Finite element discretization of the inclusions in 
Eqs. (2) and (3) results in a system of two coupled 
system of linear algebraic equations for the unknown 
nodal displacements inside the inclusion. Once the 
displacement field, u(x), within the inclusion is de-
termined, that outside the inclusions can be obtained 
from Eqs. (2) and (3) by evaluating the integrals. The 
stress field within and outside the inclusions can also 
be determined without any difficulty. The details of 
the numerical treatment can be found in Lee and Mal 
[17, 18] and will be omitted. 

3.2 Scattering of P and SV waves in unbounded 
isotropic matrix containing an orthotropic inclu-
sion

3.2.1 The volume integral equation method (VIEM)  
Consider a single orthotropic cylindrical inclusion 

in the unbounded isotropic matrix. The incident wave 
can be either a P wave or an SV wave. Let the coor-
dinate axes x1(x), x2(y), x3(z), be taken parallel to the 
symmetry axes of the orthotropic material. Let 1, and 

11c , 12c , 22c , 66c  denote the density and elastic 
constants of the inclusion, and 2 and 2, 2 the den-
sity and Lamé constants of the isotropic matrix, re-
spectively. 

For P and SV waves, the volume integral equation 
(1) reduces to 
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and 
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where u1(x), u2(x) are the in-plane displacement com-
ponents,  = 1 – 2, c11 = c11 – ( 2 + 2 2), c11 = c12 

– 2, c22 = c22 – ( 2 + 2μ2), and c66 = c66 – μ2.
In Eqs. (5) and (6), m

ig is Green's function for the 
unbounded isotropic matrix material. Thus, the vol-
ume integral equation method does not require the use 
of Green's function for the anisotropic material of the 
inclusions. This is in contrast to the boundary integral 
equation method, where the infinite medium Green's 
functions for both the matrix and the inclusion are 
involved in the formulation of the equations. 

Finite element discretization of the inclusions in 
Eqs. (5) and (6) results in a system of two coupled 
system of linear algebraic equations for the unknown 
nodal displacements inside the inclusion. Once the 
displacement field, u(x), within the inclusion is de-
termined, that outside the inclusions can be obtained 
from Eqs. (5) and (6) by evaluating the integrals. The 
stress field within and outside the inclusions can also 
be determined without any difficulty. 

3.2.2 The boundary integral equation method 
(BIEM)

The integral equation on the outer surface S+ of the 
anisotropic inclusion can be expressed as (Banerjee 
[20], Rizzo et al. [21]) 

,
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while for the interior surface S-
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In Eqs. (7) and (8) n is the outward unit normal to 
S+, and the superscripts (M) and (I) indicate that the 
quantities involved are for the isotropic matrix and 
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the inclusions, respectively. Eqs. (7) and (8), together 
with the continuity conditions across S, give rise to 
the boundary integral equation for u(x). When the 
inclusion becomes a void, the integral equations re-
duce to the standard boundary integral equation 

,( ) ( ) ( , ) ( )M m Mo
m m i jijkl k lS

u u c g u n dsx x x  (9) 

Consider a single orthotropic cylindrical inclusion 
in the unbounded isotropic matrix. The incident wave 
can be either a P wave or an SV wave. Let 1 and 11c ,

12c , 22c , 66c  denote the density and elastic con-
stants of the inclusion, respectively, and 2 and 2, 2

being the density and Lamé constants of the isotropic 
matrix, respectively. 

The integral equations on the outer surface of the 
orthotropic inclusion can be expressed as 
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where ( )Mg  is Green's function for the unbounded 
isotropic matrix material and is given in Eq. (4). 
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For the interior surface, the equations are 
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It should be noted that ( )Ig  and ( )IT
( , 1,2) in Eq. (13) are Green's function and their 
associated tractions for the orthotropic inclusions. 
And t  is given by 

1 11 1,1 1 12 2,2 1 66 1,2 2,1 2

2 22 2,2 2 12 1,1 2 66 1,2 2,1 1

( )

( )
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However, the closed form solution for the two-
dimensional time-harmonic elastodynamic Green's 
function for the orthotropic material is not available in 
the literature [10-12]. Therefore, the numerical im-
plementation of the boundary element method for the 
solving wave scattering by anisotropic inclusions is 
an extremely difficult if not impossible task. 

3.2.3 Numerical formulation  
It should be noted that the volume integral equation 

method involves only ( )Mg  and ( )MT  for the 
isotropic matrix, while the boundary integral equation 
involves ( )Mg  and ( )IT  for the anisotropic 
inclusions in addition to these. Furthermore, the sin-
gularities in VIEM are weaker (integrable) than those 
in BIEM, where they are of the Cauchy type. We 
have used the direct integration scheme as introduced 
by Cerrolaza and Alarcon [22], Li and Han [23] and 
Lu and Ye [24] after suitable modifications to handle 
the singularities; a description of the modified method 
used in the discretization of the volume integral equa-
tion is given by Lee and Mal [17, 18].  

4. Single inclusion problems 

4.1 Scattering of P waves in unbounded isotropic 
matrix containing an isotropic inclusion  

We first consider a single isotropic cylindrical in-
clusion in the unbounded isotropic matrix as shown in 
Fig. 2. Fig. 3 shows a typical discretized model used  

Fig. 2 P wave interaction with an isotropic inclusion in un-
bounded isotropic matrix.  
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Table 1 Material properties of the isotropic matrix and the 
orthotropic and isotropic inclusion. 

Elastic  
constants 

Isotropic  
matrix 

Orthotropic 
inclusion 

Isotropic  
inclusion 

 (g/ ) 4.54 2.78 2.78 
 (GPa) 67.34 - 93.03 

μ (GPa) 37.88 - 93.03 
c11 (GPa) 143.10 279.08 279.09 
c12 (GPa) 67.34 7.80 93.03 
c22 (GPa) 143.10 30.56 279.09 
c66 (GPa) 37.88 11.80 93.03 

Fig. 3. A typical discretized model in the volume integral 
equation method. 

in the VIEM. The standard eight-node quadrilateral 
and six-node triangular elements were used in the 
VIEM. In the unbounded isotropic matrix ,  (  + 
2 ), and μ vanish, so that, it is necessary to discre-
tize the isotropic inclusion only. The total number of 
elements used in VIEM was 256. 

In the P wave case the incident wave is assumed to 
be given by 

1

1
1

ik x
o eu

ik
 (15) 

where k1 is the P wave number in the matrix material.  
The elastic constants for the materials of the isotropic 
matrix and the isotropic inclusion are listed in Table 1.  
The calculations are carried out for three different 
normalized wavenumbers, k1a = 1.25, 3.0, and 5.0, 
corresponding to wavelengths to inclusion radius 
ratios between about 0.2 and 0.8. This is a useful 
range of frequencies for in response to dynamic load-
ing and ultrasonic testing. 

In this paper, six models (two symmetric models 
and four total models) with different number of ele 
ments for the isotropic and orthotropic inclusions are 

Fig. 4. Real and Imaginary parts of the displacement u1 (dis-
placement in the x-axis) using VIEM at the interface of single 
isotropic cylindrical inclusion for k1a = 1.25, 3.0 and 5.0. k1 is
the P wavenumber in the unbounded isotropic matrix. 

used for the convergence test. The six models are 
Model 1 (total model with 144 elements), Model 2 
(symmetric model with 64 elements), Model 3 (total 
model with 384 elements), Model 4 (symmetric 
model with 144 elements), Model 5 (symmetric 
model with 225 elements) and Model 6 (symmetric 
model with 289 elements). The VIEM solutions using 
the different models converged very well within this 
range of nodal elements. It should be noted that the 
VIEM solutions for the isotropic inclusion converged 
more quickly than those for the orthotropic inclusion. 

Figs. 4 and 5 show real and imaginary parts of the 
displacement components, u1(along the x-axis) and u2

(along the y-axis), at the interface of single isotropic 
cylindrical inclusion using the volume integral equa-
tion method for different frequencies. The accuracy of 
the VIEM solution to this problem was studied and 
confirmed by Lee and Mal [17]. 
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Fig. 5. Real and Imaginary parts of the displacement u2 (displace-
ment in the y-axis) using VIEM at the interface of single isotropic 
cylindrical inclusion for k1a = 1.25, 3.0 and 5.0. k1 is the P 
wavenumber in the unbounded isotropic matrix. 

4.2 Scattering of P waves in unbounded isotropic 
matrix containing an orthotropic inclusion 

In order to investigate the difference between an 
isotropic inclusion and an anisotropic inclusion, we 
next consider a single orthotropic cylindrical inclu-
sion in the unbounded isotropic matrix as shown in 
Fig. 6. Fig. 3 shows a typical discretized model used 
in the VIEM. The unbounded isotropic matrix is as-
sumed to be the same as before. The density and c11

for the orthotropic inclusion are assumed to be the 
same as those of the isotropic inclusion, while the 
other elastic constants, c12, c22 and c66, of the isotropic 
and orthotropic inclusions are assumed to be different 
from each other. The elastic constants for the materi-
als of the isotropic matrix and the orthotropic inclu-
sion are listed in Table 1. The incident waves in Eq. 
(15) with three different normalized wavenumbers,  

Fig. 6. P wave interaction with an orthotropic inclusion in 
unbounded isotropic matrix. 

k1a = 1.25, 3.0, and 5.0, are used as before. 
According to the authors' knowledge, neither the 

analytical solution to this problem nor the closed form 
solution for the two-dimensional time-harmonic elas-
todynamic Green's function for the orthotropic mate-
rial is available in the literature. Thus, comparison 
between the VIEM solution and the result from the 
analytical or boundary integral equation method is 
omitted and the verification for the VIEM result will 
be replaced with a comparison between the VIEM 
solution and the results from the analytical and 
BIEMs to the corresponding elastostatic problem by 
[14]. Lee et al. [14] considered a single orthotropic 
elliptic-cylindrical inclusion in the unbounded iso-
tropic matrix under uniform remote tensile load-
ing, o

X . There was excellent agreement between the 
analytical solution (see, e.g., [25, 26]) and the nu-
merical solutions using VIEM and BIEM for the 
normalized tensile stress component o

X X( / )
within the orthotropic inclusion under uniform remote 
tensile loading o

X( )  for all cases considered. 
Figs. 7 and 8 show real and imaginary parts of the 

displacements, u1 and u2, at the interface of single 
orthotropic cylindrical inclusion using the VIEM for 
different frequencies. The VIEM solutions using the 
six different models used in Section 4.1 converged 
more slowly than those for the isotropic inclusion. 

Figs. 4, 5, 7 and 8 show that the x-components of 
the displacement, u1, for the isotropic and orthotropic 
inclusions are not much different from each other. 
This is due to the fact that the stiffness constant, c11, is 
the same for the isotropic and orthotropic inclusions. 
On the other hand, the y-components of the displace-
ment, u2, for the two cases are quite different due to 
the difference in the values of the stiffness constant, 
c22 of the two materials. 
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Fig. 7. Real and Imaginary parts of the displacement u1 (displace-
ment in the x-axis) using VIEM at the interface of single orthotropic 
cylindrical inclusion for k1a = 1.25, 3.0 and 5.0. k1 is the P 
wavenumber in the unbounded isotropic matrix. 

4.3 Scattering of SV waves in unbounded isotropic 
matrix containing isotropic and orthotropic in-
clusions 

In the SV wave case the incident wave is assumed 
to be given by 

20
2

2

ik xeu
ik

 (16) 

where k2 is the S wavenumber in the matrix material 
(Fig. 9). The normalized wavenumbers, k1a = 1.25, 
3.0, and 5.0, and the elastic constants for the isotropic 
inclusion are listed in Table 1. 

Fig. 10 shows real and imaginary parts of the dis-
placement component, u2, at the interface of the iso-
tropic cylindrical inclusion at different frequencies.   

Fig. 8. Real and Imaginary parts of the displacement u2 (dis-
placement in the y-axis) using VIEM at the interface of single 
orthotropic cylindrical inclusion for k1a = 1.25, 3.0 and 5.0. 
k1 is the P wavenumber in the unbounded isotropic matrix. 

Fig. 9. SV wave interaction with an orthotropic inclusion in 
unbounded isotropic matrix. 

The accuracy of the VIEM solution to this problem 
was studied and confirmed by Lee and Mal [17]. In 
order to investigate the difference between an iso-
tropic inclusion and an orthotropic inclusion, a single 
orthotropic cylindrical inclusion in the unbounded 
isotropic matrix is considered next. The elastic con- 
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Fig. 10. Real and Imaginary parts of the  displacement u2 (dis-
placement in the y-axis) using VIEM at the interface of single 
isotropic cylindrical inclusion for k2a = 1.25, 3.0 and 5.0. k2is the S 
wavenumber in the unbounded isotropic matrix. 

stants for the materials of the isotropic matrix and the 
orthotropic inclusion are assumed to be the same as 
before and are listed in Table 1. The convergence of 
the VIEM solutions was verified by increasing the 
number of nodes for the models used in Section 4.1. 
Fig. 11 shows real and imaginary parts of the dis-
placement component, u2, at the interface of the 
orthotropic cylindrical inclusion at different frequen-
cies. Figs. 10, 11 show that, due to the difference in 
the values of the stiffness constant, c22 of the two ma-
terials, u2, the y-components of the displacement for 
the isotropic and orthotropic inclusions are very dif-
ferent from each other. 

Also, because the stiffness constant, c11, is the same 
for the isotropic and orthotropic inclusions, the x-
component of the displacement, u1, for the isotropic 
and orthotropic inclusions are not much different 
from each other. Thus, real and imaginary parts of the 
displacement component, u1, at the interface of the 
isotropic cylindrical inclusion at different frequencies  

Fig. 11. Real and Imaginary parts of the displacement u2 (dis-
placement in the y-axis) using VIEM at the interface of single 
orthotropic cylindrical inclusion for k2a = 1.25, 3.0 and 5.0. 
k2 is the S wavenumber in the unbounded isotropic matrix. 

are not shown here. 

5. Multiple inclusion problems 

For multiple isotropic or anisotropic inclusions, the 
volume integral equation method is easier and more 
convenient to apply than the boundary integral equa-
tion method. Since the continuity condition at each 
interface is automatically satisfied in the volume inte-
gral equation formulation, it is not necessary to apply 
continuity conditions at each interface. Also, there is 
no change in the basic formulation from the single 
inclusion case. Furthermore, the method is not sensi-
tive to the geometry of the inclusions. 

5.1 Scattering of SH waves in unbounded isotropic 
matrix containing multiple isotropic inclusions 

For SH waves, the volume integral equation (1) be-
comes 
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where 3( )u x is the anti-plane displacement compo-
nent, 1 2 , 1 2 , and is the shear 
modulus.  

In Eq. (17), ,xm
ig  is Green's function for the 

unbounded isotropic matrix material. The Green's 
function for the SH problem is given by Kitahara 
[19] 

3 0 2
3

2

( )
( , )

4
iH k rg x  (18)

where r x , 2 2k is the S wavenumber, 
2  is the shear wave speed in the matrix material, 

and H0 is the Hankel function of the first kind of the 
zeroth order. Since the unknowns are the displace-
ments and strains inside the inclusion, it is convenient 
to discretize this region by using standard finite ele-
ments, resulting in a system of linear algebraic equa-
tions for the unknown nodal displacements inside the 
inclusion. The integro-differential equation (17) can, 
in principle, be solved numerically for multiple iso-
tropic or anisotropic inclusions (see, e.g., Lee and 
Mal [17]. 

In the SH wave case the incident wave is assumed 
to be given by 

20
3

ik xu e  (19) 

where k2 is the S wavenumber in the matrix material. 
The discretized form of Eq. (2) is solved for the un-
known u3(x) and its derivatives within the inclusion. 

There is no change in the basic formulation for 
multiple inclusions from the single inclusion case. In 
the host medium,  and vanish so that it is 
necessary to discretize the multiple inclusions only. 
For each observation point, it is necessary to integrate 
over the whole domain of each inclusion. Although 
the volume integral equation method can be applied 
to arbitrary packing sequences and shapes of isotropic 
or anisotropic inclusions, in order to compare the 
calculated results with available analytical solutions, 
simple packing sequence (hexagonal and square) and 
isotropic circular inclusions in Fig. 12 were consid-
ered. The material properties used are those for typi-
cal graphite/epoxy composites and are given in Table 
2.

Table 2. Material properties of graphite/epoxy composites.

Material Density(g/cm3) (GPa) 
Graphite 1.79 27.580 
Epoxy 1.26  1.595 

Fig. 12. SH wave interaction with multiple isotropic inclu-
sions.

(a) 7 inclusions of hexagonal packing sequence 

(b) 9 inclusions of square packing sequence 

(c) 19 inclusions of hexagonal packing sequence 

(d) 25 inclusions of square packing sequence 

Fig. 13 Discretized models for multiple inclusion problems 
used in the volume integral equation method. 
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Table 3. Real part of calculated average strains in the central 
fiber by analytical and volume integral equation methods. 
The material is graphite/epoxy with volume concentration 0.6 
and frequency is 10 MHz. 

Average Strain (Re) Number of  
Inclusions  Analytical VIE Difference 

7 0.09416 0.09474 0.61% 
9 0.09035 0.09048 0.14% 
19 0.08072 0.08089 0.21% 
25 0.08047 0.08070 0.29% 

Table 4. Imaginary part of calculated average strains in the 
central fiber by analytical and volume integral equation 
methods. The material is graphite/epoxy with volume con-
centration 0.6 and frequency is 10 MHz. 

Average Strain (Im) Number of  
Inclusions  Analytical VIE Difference 

7 -0.0270 -0.0272 0.74% 
9 -0.0329 -0.0330 0.30% 
19 -0.0519 -0.0523 0.77% 
25 -0.0645 -0.0652 1.10% 

Fig. 13 shows discretized models used in the VIEM. 
The standard eight-node quadrilateral and six-node 
triangular elements were used in the VIEM. The total 
number of elements for each inclusion used in VIEM 
was 256. 

Tables 3 and 4 show real and imaginary parts of the 
calculated average strains in the central isotropic fiber 
by analytical Yang and Mal [27] and the volume inte-
gral equation methods for different numbers of inclu-
sions. It can be seen that the percentage differences in 
the two sets of results are less than 1% in all cases. 

6. Concluding remarks  

The volume integral equation method is applied to 
the solution of two-dimensional wave scattering prob-
lems with isotropic or anisotropic inclusions in un-
bounded isotropic matrix. The main advantage of this 
technique over those based on finite elements is that it 
requires discretization of the inclusions only in con-
trast to the need to discretize the entire domain. It is 
similar to the boundary integral equation method 
except for the presence of the volume integral over 
the inclusions instead of the surface integrals over the 
two sides of the interface. If the medium contains a 
small number of isotropic inclusions, this method 
may not have any advantage over BIEM. However, in 
the presence of multiple non-smooth inclusions, the 

BIEM numerical treatment becomes cumbersome. 
Since standard finite elements are used in the VIEM, 
it is very easy and convenient to handle multiple non-
smooth inclusions. In elastodynamic problems 
involving multiple anisotropic inclusions, BIEM nu-
merical treatment becomes extremely difficult since 
closed form expressions for elastodynamic Green’s 
function for anisotropic media are not available.   

The formulations developed in this paper can be 
used to calculate the dynamic stress intensity factors 
and other quantities of practical interest in realistic 
models of materials containing strong heterogeneities. 
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